Couvre les principes et les applications de l'imagerie par résonance magnétique, y compris la spectroscopie RMN, l'imagerie multidimensionnelle et les mécanismes de contraste des images.
Introduit les principes de base de la spectroscopie RMN, y compris les déplacements chimiques et les niveaux d'énergie, avec des exemples de spectres RMN.
Introduit les notions de base de la chimie organique, couvrant les groupes fonctionnels, la liaison chimique, l'électronégativité et les applications pratiques dans divers domaines.
Explore les principes quantiques derrière la spectroscopie RMN pulsée, y compris l'interaction Zeeman et la manipulation de spin par irradiation radiofréquence.
Explore l'importance des changements chimiques calculés dans la spectroscopie RMN et les défis de la prédiction des changements chimiques à l'aide de l'apprentissage automatique.
Explore les effets des échanges chimiques dans la RMN, élargit les lignes de RMN et donne des informations sur les réactions chimiques et les réarrangements moléculaires.
Explore la multivalence, la coopérativité et les constantes de liaison en chimie supramoléculaire, en mettant l'accent sur la spectroscopie RMN et la calorimétrie de titrage isotherme.
Introduit les fondamentaux de la relaxation spin en résonance magnétique, couvrant la relaxation spin-lattice et spin-spin, et le mouvement rotationnel dans les liquides.