Introduit les principes fondamentaux de l'apprentissage statistique, couvrant l'apprentissage supervisé, la théorie de la décision, la minimisation des risques et l'ajustement excessif.
Introduit un cadre fonctionnel pour les réseaux neuronaux profonds avec des splines adaptatives linéaires à la pièce, mettant l'accent sur la reconstruction de l'image biomédicale et les défis des splines profondes.
S'oriente vers l'approximation du réseau neuronal, l'apprentissage supervisé, les défis de l'apprentissage à haute dimension et la révolution expérimentale de l'apprentissage profond.
Couvre les réseaux neuronaux convolutionnels, y compris les couches, les stratégies de formation, les architectures standard, les tâches comme la segmentation sémantique, et les astuces d'apprentissage profond.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Explore l'optimisation des réseaux neuronaux, y compris la rétropropagation, la normalisation des lots, l'initialisation du poids et les stratégies de recherche d'hyperparamètres.