Explore la production, le stockage, le traitement et les dimensions de Big Data, ainsi que les défis en matière d'analyse de données, d'élasticité de l'informatique en nuage et de sécurité.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.
Couvre l'intégration du stockage de données évolutives et de la carte réduisent le traitement à l'aide de Hadoop, y compris HDFS, Hive, Parquet, ORC, Spark et HBase.
Couvre les progrès des systèmes d'analyse de données et le rôle de la co-conception matériel-logiciel dans l'amélioration des performances à l'ère post-Moore.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Couvre les fondamentaux du traitement des flux de données, y compris les informations en temps réel, les applications de l'industrie, et les exercices pratiques sur Kafka et Spark Streaming.