Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Fournit un aperçu du traitement du langage naturel, en se concentrant sur les transformateurs, la tokenisation et les mécanismes d'auto-attention pour une analyse et une synthèse efficaces du langage.
Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.