Couvre les concepts fondamentaux de l'apprentissage automatique, y compris la classification, les algorithmes, l'optimisation, l'apprentissage supervisé, l'apprentissage par renforcement et diverses tâches telles que la reconnaissance d'images et la génération de texte.
Explore l'évaluation de la précision et de la robustesse de la machine et de l'homme sur ImageNet, en soulignant les progrès, les défis et la nécessité d'améliorer.
Explore l'intelligence visuelle, la formation d'images, la vision par ordinateur et la compréhension de la représentation dans les machines et les esprits.
Explore le transfert de style, la traduction d'images, l'apprentissage auto-supervisé, la prédiction vidéo et la génération de description d'images à l'aide de techniques d'apprentissage en profondeur.
Couvre les concepts d'apprentissage profond, en se concentrant sur les graphiques, les transformateurs et leurs applications dans le traitement des données multimodales.
Explore des exemples contradictoires, des défenses et une robustesse certifiée dans l'apprentissage profond, y compris le lissage gaussien et les attaques perceptuelles.
Explore les fondamentaux de l'apprentissage profond, y compris la classification de l'image, les principes de travail du réseau neuronal et les défis de l'apprentissage automatique.