Modélisation de données dans les neurosciences: Meenakshi Khosla
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre la formation de régression linéaire pour trouver la meilleure ligne pour des points de données donnés, essentielle pour prédire les prix des maisons.
Couvre les Perceptrons multicouches, les neurones artificiels, les fonctions d'activation, la notation matricielle, la flexibilité, la régularisation, la régression et les tâches de classification.
Discute des défis et de l'avenir de l'informatique neuromorphe, en comparant les ordinateurs numériques et le matériel spécialisé, comme SpiNNaker et NEST, tout en explorant la plate-forme informatique neuromorphe du projet Human Brain.
Explore le traitement du signal neuronal pour les interfaces cerveau-ordinateur, y compris les techniques de décodage comme les filtres Kalman et le tri des pics.
Explore l'apprentissage automatique efficace par la synthèse des données, couvrant les défis, les méthodes et les applications impactées dans divers domaines.
Explore les signaux neuraux, les techniques d'imagerie cérébrale et l'organisation du cerveau, soulignant l'importance de comprendre les méthodes d'imagerie cérébrale et de mesurer les signaux du cerveau de façon non invasive.