Intelligence en temps réel : défis liés aux données et évolution du matériel
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre le traitement de flux de données avec Apache Kafka et Spark, y compris le temps d'événement vs le temps de traitement, les opérations de traitement de flux, et les jointures de flux.
Explore les techniques de nettoyage axées sur les requêtes pour les contraintes de déni dans les bases de données, en mettant l'accent sur les stratégies de relaxation et l'efficacité de nettoyage.
Couvre l'introduction et les défis des entrepôts de données, y compris l'intégration des données, la gestion des métadonnées et l'optimisation des performances des requêtes.
Couvre la croissance exponentielle des données, les défis dans la technologie de traitement, la variété des données, le nettoyage, le traitement approximatif des requêtes, l'analyse multi-requêtes et le traitement hybride des transactions.
Explore les défis du big data, les caractéristiques, les techniques de dégroupage et les stratégies de gestion des défaillances dans le traitement et la gestion des données.