Intelligence en temps réel : défis liés aux données et évolution du matériel
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la méthodologie MODNet pour les prévisions des biens matériels, en mettant l'accent sur la sélection des caractéristiques et l'apprentissage supervisé.
Explore les changements matériels, l'optimisation des requêtes, la répartition de la charge de travail, et des stratégies efficaces pour le milieu universitaire et l'équilibre entre vie professionnelle et vie privée.
Couvre les fondements des systèmes de base de données, y compris la modélisation des données, le traitement de l'information et les défis de la gestion d'importants volumes de données.
Discute de la modélisation des systèmes hydrologiques, en mettant l'accent sur le routage et la rétention des inondations à l'aide d'une nouvelle base de données.
Explore les entrepôts de données, les systèmes d'aide à la décision, OLAP, les lacs de données, les modèles de données multidimensionnels et les optimisations de requêtes.
Explore les progrès de la science des données, en mettant l'accent sur des idées rapides, la variété des données et les systèmes de données intelligents en temps réel.
Explore l'utilisation d'interconnexions rapides pour le co-traitement évolutif avec les GPU dans les bases de données, soulignant l'importance de surmonter le goulot d'étranglement du transfert et de réévaluer les hypothèses d'amélioration des performances.