Contient les CNN, les RNN, les SVM et les méthodes d'apprentissage supervisé, soulignant l'importance d'harmoniser la régularisation et de prendre des décisions éclairées dans le domaine de l'apprentissage automatique.
Couvre la classification des images, le clustering et les techniques d'apprentissage automatique telles que la réduction de la dimensionnalité et l'apprentissage par renforcement.
Explore les concepts avancés de coloration graphique, y compris la coloration plantée, le seuil de rigidité, et les variables gelées en points fixes BP.
Explore les techniques de regroupement de comportement et de réduction de dimensionnalité non supervisées, couvrant des algorithmes comme K-Means, DBSCAN et Gaussian Mixture Model.
Couvre les concepts de lunettes de spin et d'estimation bayésienne, en se concentrant sur l'observation et la déduction de l'information d'un système de près.