Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'évolution des techniques de reconstruction de l'image médicale, des méthodes classiques aux approches fondées sur les données à l'aide de réseaux neuronaux profonds.
Explore une approche de réseau neuronal à la tomographie d'état quantique utilisant RBM, présentant des prédictions précises et des applications potentielles au-delà de RBM.
Discute du décalage d'entrée moyen et du problème de biais dans les mises à jour de poids pour les réseaux neuronaux, soulignant l'importance d'une initialisation correcte pour prévenir les problèmes de gradient.
Explore les méthodes d'optimisation RMSprop et ADAM dans les réseaux neuronaux artificiels, en se concentrant sur les fonctions d'erreur, l'élan et le rapport signal/bruit.
Explore les stratégies d'optimisation pour les accélérateurs d'apprentissage en profondeur, en mettant l'accent sur la réduction des mouvements de données grâce au batching, à l'optimisation des flux de données et à la compression.