Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore Transformers dans la vision informatique, se concentrant sur l'architecture 'Attention est tout ce dont vous avez besoin' et ses applications dans les tâches visuelles.
Introduit des réseaux neuronaux convolutionnels pour le traitement de l'image, couvrant les composants de base, les architectures et les applications pratiques, y compris la dénouement et la segmentation.
Explore les solutions de réseau neuronal profond pour l'équation électronique Schrödinger et leur efficacité de calcul dans la physique de nombreux corps.
Couvre l'intelligence visuelle, les réseaux de rétroaction, la prédiction basée sur la taxonomie et les réseaux neuronaux récurrents pour la classification des images.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Explore la dynamique quantique de plusieurs corps à l'aide de réseaux neuronaux artificiels, en mettant l'accent sur les simulations expérimentales et les défis théoriques.
Explore les équations intégrales neurales pour modéliser les systèmes du monde réel à l'aide d'équations fonctionnelles non locales et de réseaux neuronaux profonds.
Explore les réseaux neuronaux convolutifs pour la segmentation sémantique, discutant des modèles de classification des pixels, du décodage appris et de l'importance des connexions par saut.