Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les solutions de réseau neuronal profond pour l'équation électronique Schrödinger et leur efficacité de calcul dans la physique de nombreux corps.
Plonge dans les filtres convolutifs comme un biais inductif pour les images dans les réseaux neuronaux, en mettant l'accent sur l'indépendance de la traduction et des détecteurs de caractéristiques locales.
Explore l'analyse et la classification de la texture dans les images, en mettant l'accent sur le rôle des techniques d'apprentissage automatique telles que les réseaux neuronaux convolutifs.
Explore les charges de travail d'apprentissage automatique, les couches DNN, les tableaux systolique et l'efficacité des accélérateurs spécialisés tels que les TPU.
Explique le suivi des retards de code en utilisant une DLL, des discriminateurs cohérents et non cohérents, une opération NCO et des erreurs multipath.
Discute des réseaux neuronaux convolutifs, de leur architecture, des techniques de formation et des défis tels que des exemples contradictoires en apprentissage profond.
Explore les réseaux neuronaux convolutifs pour la segmentation sémantique, discutant des modèles de classification des pixels, du décodage appris et de l'importance des connexions par saut.
Explore les défis d'automatisation sécuritaires pour les systèmes intelligents, se concentrant sur les voitures autoconduites et proposant des solutions basées sur la dynamique du système et les filtres.