Séance de cours

Traitement d'image II: classificateurs gaussiens et réseaux neuronaux

Description

Cette séance de cours couvre l'application de la distribution gaussienne multivariée dans le traitement d'image, y compris le classificateur gaussien à erreur minimale et la classification bayésienne. Il explore également la classification des textures en utilisant des ondelettes et l'évaluation des résultats de la classification des textures. En outre, il se penche sur des cas particuliers de classificateurs gaussiens, tels que le classificateur de distance minimale et le classificateur de distance Mahalanobis. La séance de cours traite en outre de l'estimation des paramètres, de l'apprentissage supervisé et de la classification du plus proche voisin. Il se termine par un aperçu des fonctions discriminantes, des techniques d’optimisation et de l’émergence de l’apprentissage profond, en se concentrant sur les réseaux neuronaux convolutifs.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.