L'apprentissage automatique en dynamique moléculaire
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des modèles linéaires pour l'apprentissage supervisé, couvrant le suréquipement, la régularisation et les noyaux, avec des applications dans les tâches d'apprentissage automatique.
Explore les descripteurs atomiques, en mettant l'accent sur la symétrie, la localité et les défis de l'incorporation de l'électrostatique dans les modèles d'apprentissage automatique pour la chimie.
Explore la propagation des croyances, les clusters gelés et les seuils de colorabilité dans les modèles graphiques, ce qui explique l'importance de la propagation des enquêtes dans la résolution des problèmes de satisfaction liés aux contraintes.
Discute des méthodes du noyau dans l'apprentissage automatique, en se concentrant sur la régression du noyau et les machines vectorielles de support, y compris leurs formulations et applications.