Couvre les concepts clés de l'apprentissage par renforcement, des réseaux neuronaux, du clustering et de l'apprentissage non supervisé, en mettant l'accent sur leurs applications et leurs défis.
Couvre les concepts fondamentaux de probabilité et de statistiques, en se concentrant sur l'analyse des données, la représentation graphique et les applications pratiques.
Couvre l'optimisation dans l'apprentissage automatique, en mettant l'accent sur la descente par gradient pour la régression linéaire et logistique, la descente par gradient stochastique et des considérations pratiques.
Explore la régression logistique pour la classification binaire, couvrant la modélisation des probabilités, les méthodes d'optimisation et les techniques de régularisation.
Explore la perception dans l'apprentissage profond pour les véhicules autonomes, couvrant la classification d'image, les méthodes d'optimisation, et le rôle de la représentation dans l'apprentissage automatique.
Explore le rôle des propriétés topologiques d'ordre supérieur dans les réseaux complexes en utilisant l'analyse topologique des données pour la détection des ruptures structurelles et des anomalies de prix.