Couvre les techniques de récupération d'informations de forme 3D à partir d'images 2D à l'aide de modèles d'ombrage et d'approches modernes d'apprentissage profond.
Explore l'évaluation de la précision et de la robustesse de la machine et de l'homme sur ImageNet, en soulignant les progrès, les défis et la nécessité d'améliorer.
Couvre les architectures de transformateurs avancées en apprentissage profond, en se concentrant sur les modèles Swin, HUBERT et Flamingo pour les applications multimodales.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Se penche sur le choix d'une taille de caractéristique appropriée pour l'analyse d'images dans les sciences de la vie, présentant une règle de pouce pour définir la taille de l'objet en pixels.