Reconstruire les régions du cerveau: défis et stratégies
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur la formation et les applications des modèles Vision-Language-Action, en mettant l'accent sur le rôle des grands modèles linguistiques dans le contrôle robotique et le transfert des connaissances web. Les résultats des expériences et les orientations futures de la recherche sont mis en évidence.
Explore des modèles d'apprentissage automatique pour les neurosciences, en se concentrant sur la compréhension des fonctions cérébrales et la reconnaissance des objets centraux par le biais de réseaux neuronaux convolutifs.
Introduit un apprentissage profond, de la régression logistique aux réseaux neuraux, soulignant la nécessité de traiter des données non linéairement séparables.
Couvre l'informatique neuromorphe, les défis dans l'informatique ternaire et binaire, les simulations matérielles du cerveau, et les nouveaux matériaux pour les cellules cérébrales artificielles.
Couvre les bases de la connectomique cérébrale, y compris les réseaux du cerveau, la terminologie, les schémas de données, le prétraitement, la connectivité des noeuds et la structure fonctionnelle du connectome.
Explore l'histoire et les défis du calcul d'inspiration biologique, en se concentrant sur la construction de machines intelligentes et la compréhension du fonctionnement du cerveau.