Explore les questions de sécurité et de confidentialité dans les appareils électroniques personnels, couvrant les attaques, les défenses et les conséquences.
Explore la protection de la vie privée en ligne, les menaces à l'anonymat, les répercussions sur les métadonnées et les approches pour atteindre la protection de la vie privée.
Couvre les principes et les stratégies de l'ingénierie de la protection de la vie privée, en soulignant l'importance d'intégrer la protection de la vie privée dans les systèmes de TI et les défis à relever pour atteindre la protection de la vie privée par la conception.
Se penche sur les compromis de confidentialité différentielle, l'impact disparate et les attaques de confidentialité basées sur l'apprentissage automatique.
Introduit le Mécanisme de graduation K-Norm (KNG) pour obtenir une protection de la vie privée différentielle avec des exemples pratiques et des idées sur ses avantages par rapport aux mécanismes existants.
Explore les défis de l'apprentissage profond et des applications d'apprentissage automatique, couvrant la surveillance, la confidentialité, la manipulation, l'équité, l'interprétabilité, l'efficacité énergétique, les coûts et la généralisation.
Explore les définitions, la valeur et les défis de la vie privée, y compris les données personnelles et les propriétés de la vie privée comme la pseudonymie et l'anonymat k.