Humanités numériques : approche interdisciplinaire de la science des données
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Souligne l’importance de la préparation aux données dans les interventions en cas de catastrophe et explore des stratégies pour combler les lacunes et les surcharges en matière d’information.
Couvre l'analyse des données sur la pollution atmosphérique, en se concentrant sur les bases de R, en visualisant des séries chronologiques et en créant des résumés des concentrations de polluants.
Explore l'invariance, la causalité et la robustesse de l'analyse des données, en abordant les défis et les implications pour la généralisation de la distribution.
Couvre l'analyse des données neurophysiologiques, y compris la détection AP, le calcul de la vitesse de tir et l'analyse spectrale, en mettant l'accent sur la prédiction des classes cellulaires.
Couvre les cadres de données Spark, les collections distribuées de données organisées en colonnes nommées, et les avantages de les utiliser sur les DDR.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.