Passer au contenu principal
Graph
Search
fr
en
Se Connecter
Recherche
Tous
Catégories
Concepts
Cours
Séances de cours
MOOCs
Personnes
Exercices
Publications
Start-ups
Unités
Afficher tous les résultats pour
Accueil
Séance de cours
Équations non linéaires : méthodes de bisection et de point fixe
Graph Chatbot
Séances de cours associées (32)
Précédent
Page 3 sur 4
Suivant
Mise à l'échelle et renormalisation en mécanique statistique
Explore l'échelle et la renormalisation en mécanique statistique, en mettant l'accent sur les points critiques et les propriétés invariantes.
Méthodes itératives pour les équations non linéaires
Explore des méthodes itératives pour résoudre des équations non linéaires, discuter des propriétés de convergence et des détails de mise en œuvre.
Critères d'arrêt pour l'itération de point fixe
Discute des critères d'arrêt pour l'itération de points fixes dans les équations non linéaires et comment gérer les erreurs.
Méthode Newton : Interpolation des données
Couvre la méthode de Newton pour trouver des zéros de fonctions en utilisant l'interpolation de données.
Curve Integrals: Gauss/Green Theorem
Explore l'application du théorème Gauss/Green pour calculer les intégrales de courbes le long de simples courbes fermées.
Théorèmes inverses locaux
Couvre le théorème inverse local, les difféomorphismes, les cartes de contraction, et le déterminant jacobin.
Méthodes à points fixes : équations non linéaires
Couvre les méthodes de point fixe pour trouver des zéros d'équations non linéaires.
Méthodes d'ordre supérieur: Techniques itératives
Couvre les méthodes d'ordre supérieur pour résoudre les équations itérativement, y compris les méthodes de points fixes et la méthode de Newton.
Méthode Newton pour systèmes : itérations pointes fixes
Explore la méthode Newton pour les systèmes et les itérations à points fixes, en discutant de la convergence et des propriétés.
Analyse numérique : la méthode de Newton
Explore la méthode de Newton pour trouver les racines des équations non linéaires et son interprétation comme méthode de second ordre.