Explore la résolution de systèmes linéaires et aborde la non-linéarité dans les simulations de flux numériques en utilisant des méthodes multigrilles et de linéarisation.
Explore les méthodes itératives pour résoudre les systèmes linéaires, y compris les méthodes Jacobi et Gauss-Seidel, la factorisation Cholesky et le gradient conjugué préconditionné.
Explore les systèmes linéaires, couvrant les méthodes directes et itératives pour les résoudre en mettant l'accent sur les erreurs d'arrondi et l'algorithme de Richardson.
Couvre la méthode des gradients conjugués pour résoudre les systèmes linéaires itérativement avec la convergence quadratique et souligne l'importance de l'indépendance linéaire entre les directions conjuguées.