Couvre les tests d'identité polynomiale à l'aide d'oracles et d'évaluations ponctuelles aléatoires, avec des applications dans la théorie des graphes et les aspects algorithmiques.
Explore le traitement du signal graphique appliqué aux réseaux cérébraux, en mettant l'accent sur la relation entre la fonction cérébrale et la structure en utilisant des méthodes telles que le graphique Fourier Transform et l'indice de découplage structural.
Déplacez-vous dans la centralité et les centres de neurosciences en réseau, explorant l'importance des noeuds, les réseaux de petits mondes, le connectome structural du cerveau et la théorie de la percolation.
Explore le degré de nœud et la force dans les neurosciences réseau, en discutant des réseaux aléatoires et réels et les défis d'adapter les lois de puissance aux données réelles.
Explore les distances sur les graphiques, les normes de coupe, les arbres de couverture, les modèles de blocs, les métriques, les normes et les ERGM dans l'analyse des données du réseau.
Explore la gestion des données du réseau, y compris les types de graphiques, les propriétés du réseau dans le monde réel et la mesure de l'importance des nœuds.