Explore linférence de vraisemblance maximale, comparant les modèles basés sur les ratios de vraisemblance et démontrant avec un exemple de pièce de monnaie.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.
Couvre les méthodes pour définir la tempête de conception, la distribution empirique des maxima de pluie, la distribution de Gumbel, et les relations intensité-durée-fréquence.