Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Explore l'apprentissage supervisé en matière de tarification des actifs, en mettant l'accent sur les défis de la prévision du rendement des actions et l'évaluation des modèles.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore les arbres de décision pour la classification, l'entropie, le gain d'information, l'encodage à chaud, l'optimisation de l'hyperparamètre et les forêts aléatoires.
Couvre les bases de l'apprentissage automatique, l'apprentissage supervisé et non supervisé, diverses techniques comme les voisins k-nearest et les arbres de décision, et les défis de l'ajustement excessif.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Introduit les bases de l'apprentissage supervisé, en mettant l'accent sur la régression logistique, la classification linéaire et la maximisation de la probabilité.