Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.
Discute des techniques d'optimisation dans l'apprentissage automatique, en se concentrant sur la descente de gradient stochastique et ses applications dans les problèmes contraints et non convexes.