Modèles Vision-Langue-Action : Formation et applications
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les robots d'entraînement en renforçant l'apprentissage et l'apprentissage de la démonstration, mettant en évidence les défis de l'interaction homme-robot et de la collecte de données.
Introduit le traitement du langage naturel (NLP) et ses applications, couvrant la tokenisation, l'apprentissage automatique, l'analyse du sentiment et les applications NLP suisses.
Couvre l'informatique neuromorphe, les défis dans l'informatique ternaire et binaire, les simulations matérielles du cerveau, et les nouveaux matériaux pour les cellules cérébrales artificielles.
Explore l'histoire numérique et l'analyse de la presse, en mettant l'accent sur l'impact des outils numériques sur la diffusion des connaissances et la recherche historique.
Explore les lexiques, les n-grammes et les modèles de langage, soulignant leur importance dans la reconnaissance des mots et l'efficacité des n-grammes pour diverses tâches.
Couvre les réseaux neuronaux convolutifs, les architectures standard, les techniques de formation et les exemples contradictoires en apprentissage profond.
Explore la chimie de l'oxygène, du phosphore, de l'arsenic, de l'antimoine et du bismuth, y compris leurs propriétés, leurs composés et leur importance historique.