Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les principes fondamentaux de la régression linéaire, en soulignant limportance des techniques de régularisation pour améliorer la performance du modèle.
Explore le raisonnement incertain, les réseaux bayésiens et la résolution stochastique, soulignant l'importance de la logique probabiliste et de l'enlèvement.
Couvre l'algorithme de maximisation des attentes et les techniques de regroupement, en mettant l'accent sur l'échantillonnage Gibbs et l'équilibre détaillé.
Explore les techniques bayésiennes pour les problèmes de valeur extrême, y compris l'inférence de la chaîne Markov Monte Carlo et de Bayesian, en soulignant l'importance de l'information antérieure et l'utilisation des graphiques.
Explorer la densité de calcul des états et l'inférence bayésienne à l'aide d'un échantillonnage d'importance, montrant une variance inférieure et la parallélisation de la méthode proposée.