Explore les techniques bayésiennes pour les problèmes de valeur extrême, y compris l'inférence de la chaîne Markov Monte Carlo et de Bayesian, en soulignant l'importance de l'information antérieure et l'utilisation des graphiques.
Explore les principes fondamentaux de la régression linéaire, en soulignant limportance des techniques de régularisation pour améliorer la performance du modèle.
Explore l'inférence bayésienne pour la précision dans le modèle gaussien avec la moyenne connue, en utilisant un précédent Gamma et en discutant des précédents subjectifs vs objectifs.
Explore l'évolution des simulations biomoléculaires, en mettant l'accent sur des modèles précis, l'augmentation de l'échantillonnage et le rôle transformateur des simulations dans la prédiction des résultats expérimentaux.