Couvre les techniques d'intégration numérique, en se concentrant sur l'interpolation de Lagrange et diverses méthodes de quadrature pour l'approximation des intégrales.
Explore l'estimation des erreurs dans les méthodes numériques pour résoudre les équations différentielles ordinaires, en mettant l'accent sur l'impact des erreurs sur la précision et la stabilité de la solution.
Explore les méthodes d'intégration numérique et leur application dans la résolution d'équations différentielles et la simulation de systèmes physiques.
Couvre les techniques d'intégration numérique, en se concentrant sur les formules en quadrature composite et leurs applications pour l'approximation des intégrales avec une précision améliorée.