Blocs de construction du deep learning : couches linéaires
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit des réseaux neuronaux, des fonctions d'activation et de rétropropagation pour la formation, en répondant aux défis et aux méthodes puissantes.
Explore les techniques de réduction de la variance dans l'apprentissage profond, couvrant la descente en gradient, la descente en gradient stochastique, la méthode SVRG, et la comparaison des performances des algorithmes.
Plongez dans l'optimisation du deep learning, les défis, les variantes SGD, les points critiques, les réseaux surparamétrés et les méthodes adaptatives.
Se penche sur l'analyse des données topologiques, en mettant l'accent sur les fondements mathématiques des réseaux neuronaux et en explorant l'hypothèse multiple et l'homologie persistante.
Plonge dans l'analyse des données topologiques, explorant la forme des données et leur structure sous-jacente à l'aide d'outils et de concepts mathématiques.