Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre les fondamentaux des réseaux neuronaux multicouches et de l'apprentissage profond, y compris la propagation arrière et les architectures réseau comme LeNet, AlexNet et VGG-16.
Discute de la navigation par quadritor en utilisant l'apprentissage de renforcement profond et le contrôle de bas niveau, en mettant l'accent sur l'intelligence visuelle et la robustesse du modèle de regard.
Explore la prédiction des rendements de réaction avec des modèles d'apprentissage en profondeur et l'importance d'ensembles de données de haute qualité en chimie.
Explore l'intelligence visuelle, l'évolution des yeux, les taches aveugles, la biomimétisme et la connexion bidirectionnelle entre les systèmes naturels et artificiels.
Introduit BulletArm, un référentiel de manipulation robotique open source et un cadre d'apprentissage couvrant les objectifs de conception, les tâches de référence et les algorithmes d'apprentissage.
Explore l'impact de l'apprentissage automatique dans la compréhension des maladies humaines, en mettant l'accent sur l'importance historique, la découverte de produits naturels et les défis dans les médicaments de conception.