Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.
Explore les méthodes de descente de gradient pour les problèmes convexes lisses et non convexes, couvrant les stratégies itératives, les taux de convergence et les défis d'optimisation.
Explore les méthodes d'optimisation, y compris la convexité, la descente en gradient et la minimisation non convexe, avec des exemples comme l'estimation de la probabilité maximale et la régression des crêtes.
Discute des techniques d'optimisation avancées, en se concentrant sur des méthodes de descente de gradient plus rapides et projetées dans l'apprentissage automatique.