Réseaux neuronaux : Réseau neuronal à deux couches
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Se penche sur les perspectives géométriques des modèles d'apprentissage profond, explorant leur vulnérabilité aux perturbations et l'importance de la robustesse et de l'interprétabilité.
Plonge dans l'impact de l'apprentissage profond sur les systèmes de connaissances non conceptuels et les progrès dans les transformateurs et les réseaux antagonistes génératifs.
Explore les modèles de diffusion dans la modélisation générative, couvrant lestimation de probabilité, la génération de données et lévaluation des modèles.
Couvre les mécanismes de rétroaction dans l'intelligence visuelle, l'estimation des poses humaines, l'adaptation motrice dans les robots à pattes et les contrôleurs PID.