Réseaux neuronaux : Réseau neuronal à deux couches
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit les réseaux de mémoire à long terme (LSTM) comme une solution pour la disparition et l'explosion des gradients dans les réseaux neuronaux récurrents.
Explore la relation complexe entre les neurosciences et l'apprentissage automatique, en soulignant les défis de l'analyse des données neuronales et le rôle des outils d'apprentissage automatique.
Introduit des réseaux neuronaux convolutifs, couvrant les couches entièrement connectées, les convolutions, la mise en commun, les traductions PyTorch et des applications telles que l'estimation de pose à la main et l'estimation de tubalité.
Introduit les bases de l'apprentissage profond, couvrant les réseaux neuronaux, les CNN, les couches spéciales, l'initialisation du poids, le prétraitement des données et la régularisation.
Couvre l'intelligence visuelle, les réseaux de rétroaction, la prédiction basée sur la taxonomie et les réseaux neuronaux récurrents pour la classification des images.