Couvre les optimisations avancées de Spark, la gestion de la mémoire, les opérations de brassage et les stratégies de partitionnement des données pour améliorer l'efficacité du traitement des données volumineuses.
Couvre les pratiques exemplaires et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture typique, les défis et les technologies utilisés pour y remédier.
Se concentre sur les fonctions avancées de pandas pour la manipulation, l'exploration et la visualisation des données avec Python, en soulignant l'importance de la compréhension et de la préparation des données.
Couvre le traitement des requêtes avec des opérations relationnelles, en se concentrant sur différentes méthodes de jointure et l'impact de la mise en mémoire tampon.