Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Introduit k-Nearest Neighbors pour la classification et l'expansion des fonctionnalités pour gérer les données non linéaires via des entrées transformées.
Explore des méthodes d'optimisation telles que la descente de gradient et les sous-gradients pour la formation de modèles d'apprentissage automatique, y compris des techniques avancées telles que l'optimisation d'Adam.
Couvre les concepts clés de l'apprentissage par renforcement, des réseaux neuronaux, du clustering et de l'apprentissage non supervisé, en mettant l'accent sur leurs applications et leurs défis.
Couvre l'importance de la maintenance préventive pour la détection de la détresse de la chaussée et introduit des concepts d'apprentissage automatique pour les ingénieurs.
Introduit des réseaux de neurones artificiels et explore diverses techniques de réduction de la dimensionnalité telles que PCA, LDA, Kernel PCA et t-SNE.
Explore les modèles de diffusion, en mettant l'accent sur la production d'échantillons provenant d'une distribution et l'importance de la dénigrement dans le processus.