Examine les défis liés à la protection de la vie privée dans les lieux et les diverses techniques permettant d'atténuer les inférences liées aux lieux, en soulignant l'importance des hypothèses de confiance et des questions pratiques.
Explore RAPPOR, la confidentialité différentielle, la mise en œuvre d'Apple, le clustering de k-means et les défis liés à la mise en œuvre de la confidentialité différentielle.
Explore l'évolution historique et les aspects juridiques des lois sur la protection des données, des instruments internationaux, des défis du suivi en ligne, des bases juridiques pour le traitement des données à caractère personnel et des règles de confidentialité.
Explore les définitions, la valeur et les défis de la vie privée, y compris les données personnelles et les propriétés de la vie privée comme la pseudonymie et l'anonymat k.
Introduit le Mécanisme de graduation K-Norm (KNG) pour obtenir une protection de la vie privée différentielle avec des exemples pratiques et des idées sur ses avantages par rapport aux mécanismes existants.
Explore les défis et les perspectives en matière de protection des données dans la recherche sur la cybersanté, en mettant l'accent sur la conformité au RGPD, la gestion sensible des données de santé et les agents décentralisés.
Couvre les principes et les stratégies de l'ingénierie de la protection de la vie privée, en soulignant l'importance d'intégrer la protection de la vie privée dans les systèmes de TI et les défis à relever pour atteindre la protection de la vie privée par la conception.
Se penche sur les compromis de confidentialité différentielle, l'impact disparate et les attaques de confidentialité basées sur l'apprentissage automatique.