Introduit des méthodes de regroupement hiérarchique et k-means, en discutant des approches de construction, des fonctions de liaison, de la méthode de Ward, de l'algorithme Lloyd et de k-means++.
Explore les concepts avancés de coloration graphique, y compris la coloration plantée, le seuil de rigidité, et les variables gelées en points fixes BP.
Couvre la théorie et la pratique des algorithmes de regroupement, y compris PCA, K-means, Fisher LDA, groupement spectral et réduction de dimensionnalité.
Couvre l'apprentissage non supervisé, en mettant l'accent sur la réduction de la dimensionnalité et le regroupement, en expliquant comment il aide à trouver des modèles dans les données sans étiquettes.
Introduit la méthode k-means du noyau pour former des grappes non convexes et discute du regroupement par densité pour identifier les régions denses dans les ensembles de données.
Comparer les algorithmes K-Means et Spectral Clustering, en mettant en évidence leurs différences et leurs applications pratiques dans le regroupement des comportements des élèves.
Explore la segmentation de l'image, les techniques de seuil, la segmentation de la texture et l'étiquetage des composants connectés dans le traitement de l'image.