Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Couvre l'algorithme Branch & Bound pour une exploration efficace des solutions possibles et discute de la relaxation LP, de l'optimisation du portefeuille, de la programmation non linéaire et de divers problèmes d'optimisation.
Introduit les bases de la programmation linéaire, y compris les problèmes d'optimisation, les fonctions de coût, l'algorithme simplex, la géométrie des programmes linéaires, les points extrêmes et la dégénérescence.
Explore les méthodes d'optimisation dans l'apprentissage automatique, en mettant l'accent sur les gradients, les coûts et les efforts informatiques pour une formation efficace des modèles.