Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore l'indexation sémantique latente dans la récupération d'information, en discutant des algorithmes, des défis dans la récupération spatiale vectorielle et des méthodes de récupération axées sur le concept.
Présente les bases de la récupération d'informations, couvrant la représentation de documents, l'expansion des requêtes et TF-IDF pour le classement des documents.
Explore le modèle Vector Space, le sac de mots, tf-idf, cosine similarité, Okapi BM25, et la précision et le rappel dans la récupération d'information.
Couvre la récupération d'informations probabilistes, la pertinence de la modélisation en tant que probabilité, l'expansion des requêtes et la génération automatique de thésaurus.
Introduit les bases de la recherche de l'information, couvrant la recherche par texte et booléen, la recherche de l'espace vectoriel et le calcul de la similitude.
Couvre les bases de la récupération d'informations à l'aide de modèles d'espace vectoriel et d'exercices pratiques sur la rétroaction de pertinence et la numérisation de la liste de publication.
Explore les techniques d'indexation, les fichiers inversés, les modèles map-reduce et l'utilisation de trie pour une récupération d'informations efficace.