Plasticité synaptique et apprentissage : modèle F7 Triplet STDP
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la plasticité synaptique, y compris les changements à court et à long terme dans les connexions synaptiques, pour comprendre comment l'apprentissage et la mémoire sont facilités.
Explore la modélisation détaillée des canaux ioniques et des morphologies neuronales dans les neurosciences silico, couvrant la classification des neurones, la cinétique des canaux ioniques et les observations expérimentales.
Discute de trois définitions du code de taux dans les neurosciences informatiques, en mettant l'accent sur la moyenne temporelle, les intervalles entre les spikes et le facteur FANO.
Discute des défis et de l'avenir de l'informatique neuromorphe, en comparant les ordinateurs numériques et le matériel spécialisé, comme SpiNNaker et NEST, tout en explorant la plate-forme informatique neuromorphe du projet Human Brain.
Explore les règles d'apprentissage locales pour les représentations et les actions, couvrant la plasticité synaptique, le renforcement de l'apprentissage et les bonnes représentations.