Couvre des méthodes de descente de gradient plus rapides et une descente de gradient projetée pour une optimisation contrainte dans l'apprentissage automatique.
Discute des techniques d'optimisation avancées, en se concentrant sur des méthodes de descente de gradient plus rapides et projetées dans l'apprentissage automatique.
Fournit un aperçu des techniques d'optimisation, en se concentrant sur la descente de gradient et les propriétés des fonctions convexes dans l'apprentissage automatique.