Explore les modèles linéaires pour la classification, la régression logistique, les limites de décision, la SVM, la classification multi-classes et les applications pratiques.
Explore les fondamentaux de régression logistique, y compris les fonctions de coût, la régularisation et les limites de classification, avec des exemples pratiques utilisant scikit-learn.
Explore les algorithmes de classification génératifs et discriminatifs, en mettant l'accent sur leurs applications et leurs différences dans les tâches d'apprentissage automatique.
Couvre les modèles linéaires, la régression logistique, les limites de décision, k-NN, et les applications pratiques dans l'attribution des auteurs et l'analyse des données d'image.