Explore la compression du modèle de deuxième ordre pour les réseaux neuronaux profonds massifs, montrant les techniques de compression et leur impact sur la précision du modèle.
Explore l'évolution des normes et techniques de compression vidéo, de H.261 à VVC, en mettant l'accent sur les progrès dans l'efficacité de compression et la qualité vidéo.
Explore la quantification de l'incertitude et la détection d'erreurs d'étiquetage dans l'apprentissage profond pour la segmentation sémantique, en mettant l'accent sur les défis et les méthodes de détection d'erreurs.
Explore les techniques de compression des modèles dans les NLP, en discutant de la taille, de la quantification, de la factorisation du poids, de la distillation des connaissances et des mécanismes d'attention.