Régression logistique: Modélisation des variables de réponse binaire
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Couvre l'interprétation probabiliste de la régression logistique, la régression multinomiale, le KNN, les hyperparamètres et la malédiction de la dimensionnalité.
Explore la régression logistique pour prédire les proportions de la végétation dans la région amazonienne grâce à l'analyse des données de télédétection.
Explore l'estimation des paramètres, les erreurs standard et les intervalles de confiance en utilisant le théorème de la limite centrale et des exemples pratiques.
Explore les modèles génératifs, la régression logistique et la distribution gaussienne pour approximer les probabilités postérieures et optimiser les performances du modèle.
Explore l'estimation du maximum de vraisemblance, la vraisemblance du log de profil, l'inférence sur les coefficients, la quasi-vraisemblance, la comparaison de modèle et la méthode REML.