Couvre l'algorithme Branch & Bound pour une exploration efficace des solutions possibles et discute de la relaxation LP, de l'optimisation du portefeuille, de la programmation non linéaire et de divers problèmes d'optimisation.
Couvre le concept de couverture pour les programmes linéaires et la méthode simplex, en se concentrant sur la réduction des coûts et la recherche de solutions optimales.
Couvre la modélisation et l'optimisation des systèmes énergétiques, en se concentrant sur la résolution de problèmes d'optimisation avec des contraintes et des variables.
Explore les programmes entiers, l'optimisation non convexe, les contraintes et les aspects géométriques de la programmation linéaire pour des solutions optimales.
Couvre l'approche de programmation linéaire de l'apprentissage par renforcement, en se concentrant sur ses applications et ses avantages dans la résolution des processus décisionnels de Markov.
Couvre la régression MAE, la coque convexe, les avantages de la reformulation et les problèmes pratiques liés aux variables et aux contraintes de décision.