Explore les relations entre les événements, les contraintes disjonctives et la modélisation avec des variables binaires dans les problèmes d'optimisation.
Fournit un aperçu des techniques d'optimisation linéaire, en mettant l'accent sur les méthodes de résolution de problèmes et l'importance des contraintes et des fonctions objectives.
Explore les problèmes d'optimisation convexe, les critères d'optimalité, les problèmes équivalents et les applications pratiques dans le transport et la robotique.
Couvre les bases de l'optimisation, y compris les perspectives historiques, les formulations mathématiques et les applications pratiques dans les problèmes de prise de décision.
Explore l'optimisation dans la modélisation des systèmes énergétiques, couvrant les variables de décision, les fonctions objectives et les différentes stratégies avec leurs avantages et leurs inconvénients.