Couvre les principes fondamentaux de l'apprentissage profond, y compris les données, l'architecture et les considérations éthiques dans le déploiement de modèles.
Explore l'évolution de l'analyse des données à l'IA et au ML, en mettant l'accent sur les mégadonnées, l'apprentissage automatique et l'interaction avec les médias sociaux.
Explore les défis et les points de vue de l'apprentissage profond, en mettant l'accent sur le paysage des pertes, la généralisation et l'apprentissage caractéristique.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Introduit des concepts d'apprentissage automatique appliqués tels que la collecte de données, l'ingénierie des caractéristiques, la sélection des modèles et les mesures d'évaluation du rendement.
Par Meenakshi Khosla explore la modélisation basée sur les données dans les neurosciences naturalistes à grande échelle, en mettant l'accent sur la représentation de l'activité cérébrale et les modèles de calcul.
Introduit des concepts fondamentaux d'apprentissage automatique, couvrant la régression, la classification, la réduction de dimensionnalité et des modèles générateurs profonds.
Déplacez-vous dans l'intersection de la physique et des données dans les modèles d'apprentissage automatique, couvrant des sujets tels que les champs d'expansion des grappes atomiques et l'apprentissage non supervisé.
Introduit des fondamentaux d'apprentissage profond, couvrant les représentations de données, les réseaux neuronaux et les réseaux neuronaux convolutionnels.