Déplacez-vous dans le « virage numérique » de l'histoire, en examinant la recherche historique à l'aide de journaux numérisés et en explorant la réutilisation du texte, l'intégration des mots et la visualisation des données.
Examine les éléments fondamentaux de la gestion des données, y compris les modèles, les sources et les querelles, en soulignant l'importance de comprendre et de résoudre les problèmes de données.
Couvre les meilleures pratiques et les lignes directrices pour les mégadonnées, y compris les lacs de données, l'architecture, les défis et les technologies comme Hadoop et Hive.
Fournit une vue d'ensemble des concepts d'apprentissage profond, en se concentrant sur les données, l'architecture du modèle et les défis liés à la gestion de grands ensembles de données.
Couvre les fondamentaux des écosystèmes de big data, en se concentrant sur les technologies, les défis et les exercices pratiques avec le HDFS d'Hadoop.
Couvre les outils de science des données, Hadoop, Spark, les écosystèmes des lacs de données, le théorème CAP, le traitement par lots vs. flux, HDFS, Hive, Parquet, ORC, et l'architecture MapReduce.