Analyse de régression des moindres carrés ordinaires
Description
Cette séance de cours couvre le concept de Régression des moindres carrés ordinaires (OLS), en se concentrant sur la relation entre les variables et le calcul des erreurs carrées. Il traite également du critère de restriction de la première étape et des restrictions dexclusion dans les modèles de régression.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Eiusmod elit est sunt culpa proident. Ex cupidatat occaecat anim do sit laborum elit labore ex excepteur nisi. Incididunt esse dolore pariatur adipisicing irure eiusmod ipsum dolor minim adipisicing et. Voluptate qui ad ex sint incididunt ut aliqua voluptate. Aute culpa officia adipisicing do velit elit sint.
Couvre les bases de la régression linéaire, des variables instrumentales, de l'hétéroscédasticité, de l'autocorrélation et de l'estimation du maximum de vraisemblance.
Couvre les bases de la régression linéaire, y compris l'OLS, l'hétéroskédasticité, l'autocorrélation, les variables instrumentales, l'estimation maximale de la probabilité, l'analyse des séries chronologiques et les conseils pratiques.
Explore les fondamentaux de la régression linéaire, la formation des modèles, l'évaluation et les mesures du rendement, en soulignant l'importance de la R2, du MSE et de l'EAM.
Explore l'hétéroscédasticité et l'autocorrélation en économétrie, couvrant les implications, les applications, les méthodes de test et les conséquences des tests d'hypothèses.