Explore le modèle Vector Space, le sac de mots, tf-idf, cosine similarité, Okapi BM25, et la précision et le rappel dans la récupération d'information.
Couvre la récupération de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés tels que BERT.
Couvre la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets à l'aide de matrices TF-IDF et de vecteurs de mots contextualisés.
Présente les bases de la récupération d'informations, couvrant la récupération basée sur le texte, les caractéristiques du document, les fonctions de similarité et la différence entre la récupération booléenne et la récupération classée.
Couvre l'extraction de phrases clés, une méthode pour extraire des phrases importantes du texte pour la synthèse, l'indexation et la recherche de documents.
Explore la recherche de documents, la classification, l'analyse des sentiments et la détection de sujets dans l'analyse de texte à l'aide de modèles d'apprentissage supervisé et de sacs de mots.